VENTED HYDROGEN-AIR DEFLAGRATION IN A SMALL ENCLOSED VOLUME

Rocourt, X.¹, Awamat, S.¹, Sochet, I.¹, Jallais, S.²
¹Laboratoire PRISME, ENSI de Bourges, Univ. Orleans, UPRES EA 4229, 88 bd Lahitolle, 18000 Bourges, France
²Air Liquide R&D, Les Loges-en-Josas, BP 126, 78354, Jouy-en-Josas, France

5TH INTERNATIONAL CONFERENCE ON HYDROGEN SAFETY
SEPTEMBER 9-11, 2013 - BRUSSELS - BELGIUM
Context

- Problem: Reduce green house gases, pollution and dependency on oil-based fuels
- Solution: Hydrogen, clean energy carrier (fuel cell)
- Risk: H₂ leak could fill a small confined volume in a part of a system and could ignite.
- Few studies at small scale: - McCann (1985), CH₄/air, V=5.8 dm³ and 54.9 dm³
 - Sato (2010), C₃H₈/air, V=4 dm³

Objectives of the study

- Vented deflagration in a small confined volume (V=3.4 dm³) with a stoechiometric H₂/air mixture
- Evaluate models of literature for vented deflagrations at small scale
Contents

- Experimental setup
- Experimental results
- Molkov correlation
- Bauwens model
- Comparison between models
- Conclusions
Walls: Plexiglas

- \(\text{H}_2/\text{air}, \phi=1 \), regulated by mass flow controllers
- Ignition by spark: \(E_n=122 \text{ mJ} \)
- Pressure transducers PCB Piezotronics (±1.3%)
- High speed camera Phantom at 15000 fps
Experimental setup

- 3 ignition locations: center – back wall – front wall
- 5 centered square vent areas: 225 cm², 81 cm², 49 cm², 25 cm² and 9 cm²
- Vent cover: thin polyethylene film
Experimental results

Several pressure peaks (Cooper et al. 1986 with a 760 dm³ cubic vessel):

- P_v: Relief pressure
- P_1: Pressure generated by external explosion
- P_2: Pressure generated by internal combustion (flame-acoustic coupling)

P_1 or P_2 dominates the internal pressure

H_2/air, $\phi=1$, center ignition, raw signal (black) and filtered signal (1.5 kHz low pass filter - blue)
Experimental results

<table>
<thead>
<tr>
<th>Vent area (cm²)</th>
<th>K_v</th>
<th>Center ignition</th>
<th>Back wall ignition</th>
<th>Front wall ignition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ΔP_1 (kPa)</td>
<td>ΔP_2 (kPa)</td>
<td>ΔP_1 (kPa)</td>
</tr>
<tr>
<td>225</td>
<td>1</td>
<td>3.1</td>
<td>-</td>
<td>5.0</td>
</tr>
<tr>
<td>81</td>
<td>2.8</td>
<td>11.0</td>
<td>2.5</td>
<td>25.0</td>
</tr>
<tr>
<td>49</td>
<td>4.6</td>
<td>13.0</td>
<td>10.0</td>
<td>27.8</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>-</td>
<td>78.9</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>-</td>
<td>278.4</td>
<td>-</td>
</tr>
</tbody>
</table>

- P_1 was included in P_2 which dominates for $K_v \geq 9$.
- P_2 was not noticed for center ignition ($K_v=1$) and back wall ignition ($K_v \leq 4.6$).
- For $K_v \geq 9$: maximal overpressures generated by internal combustion and by center ignition.
- ΔP_2 was not noticed for center ignition ($K_v=1$) and back wall ignition ($K_v \leq 4.6$).

$$K_v = \frac{V^2}{A_v}$$

- V – Volume (m³)
- A_v – Vent area (m²)

For $K_v \leq 4.6$ maximal overpressures generated by external combustion (center and back wall ignition) and back wall ignition.

For $K_v \geq 9$: maximal overpressures generated by internal combustion and by center ignition.

Maximal overpressure \uparrow with K_v.

- ΔP_1 was included in ΔP_2 which dominates for $K_v \geq 9$.
- ΔP_2 was not noticed for center ignition ($K_v=1$) and back wall ignition ($K_v \leq 4.6$).
Models of the literature

Actual standard to predict internal overpressure during venting explosion:

Limitations:

- $10 \text{kPa} < \Delta P_{\text{max}} < 200 \text{kPa}$
- Initial pressure $< 20 \text{kPa}$
- Static vent activation pressure $< 50 \text{kPa}$
- Deflagration index $K_G < 55 \text{MPa.m/s}$
Models of the literature

Models to answer these limitations:

Molkov (1995)
- Vent area
- Enclosure volume
- Sound velocity
- Burning velocity
- Specific heat
- Products expansion ratio
- Bradley number
- Empirical coefficients
- Turbulent Bradley number
- Deflagration Outflow Interaction
- ΔP_{max}

Bauwens (2010)
- Vent area
- Enclosure lengths
- Discharge coefficient
- Sound velocity
- Burning velocity
- Lewis number
- Specific heat
- Products expansion ratio
- Universal gas constant
- Gases temperature
- Molar mass
- Flame wrinkling coefficient
- External cloud radius
- Flame area = f(ignition location)
- Flame acceleration at the exit
- External Δp_{max}
- $\Delta P_1, \Delta P_2$

- Correlations applied with our experimental setup configurations

<table>
<thead>
<tr>
<th>Ignition Location</th>
<th>Absolute average deviations for all vent areas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Molkov 1999</td>
</tr>
<tr>
<td>Center</td>
<td>27</td>
</tr>
<tr>
<td>Back wall</td>
<td>42</td>
</tr>
<tr>
<td>Front Wall</td>
<td>133</td>
</tr>
</tbody>
</table>

- Molkov 1999 correlates better than other updated versions with small scale experimental results

- Molkov 1999 has been chosen to be compared to Bauwens model
<table>
<thead>
<tr>
<th>A_v (cm²)</th>
<th>K_v</th>
<th>Molkov (1999) ΔP_{max} (kPa)</th>
<th>Center ignition</th>
<th>Back wall ignition</th>
<th>Front wall ignition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measured ΔP_{max} (kPa)</td>
<td>Dev. (%)</td>
<td>Measured ΔP_{max} (kPa)</td>
<td>Dev. (%)</td>
</tr>
<tr>
<td>225</td>
<td>1</td>
<td>3.1</td>
<td>-35.5</td>
<td>5</td>
<td>-60</td>
</tr>
<tr>
<td>81</td>
<td>2.8</td>
<td>11</td>
<td>-18.2</td>
<td>25</td>
<td>-64</td>
</tr>
<tr>
<td>49</td>
<td>4.6</td>
<td>13</td>
<td>69.2</td>
<td>27.8</td>
<td>-20.1</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>78.9</td>
<td>-10</td>
<td>61.5</td>
<td>15.5</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>278.4</td>
<td>-1.6</td>
<td>180.8</td>
<td>51.6</td>
</tr>
</tbody>
</table>

- Correlation rather consistent with center ignition
- Overestimation for front wall ignition
- Not conservative for center and back wall ignition
Assumptions for Bauwens model:

- ΔP_2 asymptotically approaches a constant volume explosion pressure $P_{cv} = 811.7$ kPa when $Av \to 0$ m2 (Bauwens 2012)

- Initial flame velocity=laminal flame velocity $S_L = 2.14$ m.s$^{-1}$ ($Le \approx 0.9$ for stoechiometric H_2/air mixture – $S_{u0} = 0.9Le^{-1}S_L$)

- Bauwens model: vented gas composed of 90% of products and 10% of reactants \to 100% products considered in the present study

- New fitting value of $k_T = 9.26$ m$^{-1}$ (for ΔP_1) based on Bauwens (2010, 2011) and Chao (2011) experiments with a linear law.

- Flame wrinkling factor $\Xi_A = 1$ (for ΔP_2) to avoid higher overpressures generated at large scale ($S_u = \Xi_A S_L$)
Bauwens model – ΔP_1

<table>
<thead>
<tr>
<th>A_v (cm2)</th>
<th>K_v</th>
<th>Center ignition ΔP_1 (kPa)</th>
<th>Back wall ignition ΔP_1 (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measured</td>
<td>Bauwens</td>
</tr>
<tr>
<td>225</td>
<td>1</td>
<td>3.1</td>
<td>4.9</td>
</tr>
<tr>
<td>81</td>
<td>2.8</td>
<td>11.0</td>
<td>7.1</td>
</tr>
<tr>
<td>49</td>
<td>4.6</td>
<td>13.0</td>
<td>8.3</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>-</td>
<td>10.1</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>-</td>
<td>13.6</td>
</tr>
</tbody>
</table>

- Deviations varying from -36% to 58% for center ignition
- Deviations varying from -20% to 72% for back wall ignition
- Not conservative for some configurations
<table>
<thead>
<tr>
<th>A_v (cm2)</th>
<th>K_v</th>
<th>Center ignition ΔP_2 (kPa)</th>
<th>Back wall ignition ΔP_2 (kPa)</th>
<th>Front wall ignition ΔP_2 (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Measured Bauwens Dev. (%)</td>
<td>Measured Bauwens Dev. (%)</td>
<td>Measured Bauwens Dev. (%)</td>
</tr>
<tr>
<td>225</td>
<td>1</td>
<td>- 0.6 -</td>
<td>- 0.4 -</td>
<td>1.3 0.6 -53.9</td>
</tr>
<tr>
<td>81</td>
<td>2.8</td>
<td>2.5 5.6 124</td>
<td>- 3.8 -</td>
<td>2.5 4.4 76</td>
</tr>
<tr>
<td>49</td>
<td>4.6</td>
<td>10 15.7 57</td>
<td>- 10.8 -</td>
<td>6.6 11.8 78.8</td>
</tr>
<tr>
<td>25</td>
<td>9</td>
<td>78.9 58.8 -26</td>
<td>61.5 41.6 -32.4</td>
<td>40 43.4 8.5</td>
</tr>
<tr>
<td>9</td>
<td>25</td>
<td>278.4 295.9 6</td>
<td>180.8 235 30</td>
<td>196.4 237.5 20.9</td>
</tr>
</tbody>
</table>

- Model more accurate for small vent areas $K_v \geq 9$
- Not conservative for some configurations
Comparison between models - ΔP_{max}

ΔP_{max} modeled is compared to ΔP_{max} measured (ΔP_1 or ΔP_2)

<table>
<thead>
<tr>
<th>Ignition Location</th>
<th>Absolute average deviations for all vent areas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ΔP_{max} Molkov 1999</td>
</tr>
<tr>
<td>Center</td>
<td>27</td>
</tr>
<tr>
<td>Back wall</td>
<td>42</td>
</tr>
<tr>
<td>Front Wall</td>
<td>133</td>
</tr>
</tbody>
</table>

- Bauwens model is globally more accurate than Molkov 1999
- Results of both models are close for center and back wall ignition
- Molkov 1999 overpredicts pressure for front wall ignition but is conservative for this location
Consideration of ignition location given ΔP_{max} for each vent area

<table>
<thead>
<tr>
<th>Ignition Location</th>
<th>Absolute average deviations for all vent areas (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locations for ΔP_{max}</td>
<td>Molkov 1999</td>
</tr>
<tr>
<td></td>
<td>31</td>
</tr>
</tbody>
</table>

- The critical case is only considered for each vent area
- Both models give \approx similars results
- Bauwens model for $K_v \leq 4.6$
- Molkov model for $K_v > 4.6$
Experimental results

- Influence of the vent area and the ignition location on the internal overpressure for a small confined volume (H_2/air, $\Phi = 1$, $V = 3375 \text{ cm}^3$)
- 3 pressures peaks: vent failure pressure, external combustion, internal combustion with flame-acoustic interaction
- ΔP_{max} obtained with center ignition for $K_v \geq 9$ and back wall ignition for $K_v \leq 4.6$
- P_2 is dominant for small vent areas ($K_v \geq 9$)

Molkov 1999 correlation and Bauwens model

- Approximately similar results when comparing with experimental maximal overpressures (either P_1 or P_2) for center and back wall ignition
- Models results close to experimental data (Bauwens 26%, Molkov 31%) for a safe approach.
Thanks for your attention

Any questions?