

Modeling and Analysis of a Hydrogen Release in a Large Scale Facility

C. Regis Bauwens and Sergey B. Dorofeev FM Global, Research Division

5th International Conference on Hydrogen Safety September 10th, 2013

Overview

- Background
- Scale Model Simulations
- Full Scale Simulations
- Extending Results
- Additional Considerations
- Questions

Background

- Increasing use of hydrogen powered forklifts within warehouses
- Indoor refueling of forklifts presents possible release scenarios
- Consequence of accidental release needs to be assessed

Background

- Modeling Approach
 - FireFoam code used for CFD simulations
 - tracked transport of H₂ in warehouse
 - estimated overpressure from mass above LFL
 - Two sets of simulations
 - scale model
 - compared with experiments
 - full scale warehouse

Scale Model Simulation

Experiments

(Ekoto et al. 2012)

- 2.7 x 4.6 x 3.6 m³ enclosure
- simulated release from a forklift
- varying release rate
 - simulated H₂ tank release
- measured H₂
 concentration,
 overpressure

Scale Model Simulation

- CFD Simulations
 - non-uniform mesh, refined mesh where H₂ is present
 - tested multiple mesh resolutions, from 2.5 -10 cm
 - 50,000 900,000 grid points

Scale Model Simulation

Concentration Results

Total mass above LFL consistent across resolutions

© 2013 FM Global. All rights reserved.

- Overpressure estimate
 - quasi-static pressure rise
 - pressure rises uniformly on all surfaces in warehouse
 - assumptions :
 - all H₂ above LFL consumed
 - well sealed enclosure

$$\Delta p = p_0 \left[\left(\left(\frac{V_T + V_{H_2}}{V_T} \right) \left(\frac{V_T + V_{Stoich}(\sigma - 1)}{V_T} \right) \right)^{\gamma} - 1 \right]$$

- Maximum Overpressure
 - Measured (Ekoto et al., 2012):
 - 0.19 bar ceiling ignition
 - 0.25 bar forklift ignition
 - Model results:
 - 0.24 bar

- Summary
 - simulation results closely match experimental concentration measurements
 - grid independence found for mesh resolutions up to 10 cm
 - quasi-static pressure rise method produces reasonable estimate for overpressure

- 62 x 62 x 8 m warehouse (approx.200x200x25 ft)
- steady 3 minute release
- 5 release rates used
 - 0.25, 0.5, 1.0, 2.0 and 4 kg/min

Computational Mesh

- non-uniform mesh
- 10 cm grid resolution
- 0.24 m² release outlet, low exit velocity, corner of warehouse

Results

- H₂ formed thin circular clouds below ceiling
- cloud thickness varied with release rate

- Results
 - with lower release rates, proportionally less H₂
 remained above LFL

- Summary of CFD Results
 - closed, unventilated warehouse

Release rate (kg/min)	Mass above LFL (kg)	P _{max} (bar)
0.25	0.03	
0.5	0.34	0.01
1	1.6	0.02
2	4.1	0.06
4	8.0	0.12

- > 0.02 bar light damage to roof/wall panels and broken windows expected
- > 0.10 bar major structural damage expected

Extending Results

- Effect of Ventilation Systems
 - fully closed warehouse assumption overly conservative
 - ventilation systems can reduce pressure two ways
 - provides venting/pressure relief
 - removes hydrogen from warehouse
 - hydrogen removal neglected
 - highly dependent of vent placement

Extending Results

- Ventilation System Pressure Relief Estimate
 - estimate H₂ consumption time from cloud shape, size
 - compares ventilation with volume production rate

$$\Delta p = p_0 \left[V_T^{-\gamma} \left(V_T + \frac{\pi h(\sigma - 1)}{4} R^2 - \frac{R \dot{V}_{vent}}{\sqrt{\sigma} S_L} + \frac{\dot{V}_{vent}^2}{\pi h(\sigma - 1) \sigma S_L^2} \right)^{\gamma} - 1 \right]$$

- Extended warehouse sizes
 - assume cloud shape, mass above LFL unchanged
 - simply increase volume used in calculation

Extended Results

Peak overpressure summary

(Ventilated results assume 3 air changes/hour)

Volume	1 kg/min		2 kg/min		4 kg/min	
(m³)	Closed (bar)	Ventilated (bar)	Closed (bar)	Ventilated (bar)	Closed (bar)	Ventilated (bar)
16,000	0.05	0.03	0.12	0.09	0.24	0.21
25,000	0.03	0.01	0.08	0.04	0.15	0.11
31,000	0.02	0.01	0.06	0.02	0.12	0.08
50,000	0.01	-	0.04	0.01	0.07	0.04
62,000	0.01	-	0.03	-	0.06	0.02
100,000	0.01	-	0.02	-	0.04	0.01

Additional Considerations

- Sprinkler Activation
 - hydrogen cloud accumulates at ceiling
 - sprinklers typically mounted within 18" of ceiling
 - high temperature combustion products
 - sprinkler activation can cause significant damage
 - water damage to commodities
 - impair fire protection of warehouse
 - sprinkler activation experimentally confirmed

Additional Considerations

- Sprinkler Activation
 - using CFD results for cloud size, area of sprinkler activation can be estimated

Release Rate	Cloud Radius (m)	Percentage of
(kg/min)		Warehouse* Area (%)
0.25	8	1.3
0.5	19	7.4
1	34	23
2	46	43
4	54	60

Summary

- Model approach produces results consistent with scale model experiments
- Maximum overpressure highly dependent on release rate, size of warehouse
- Damage associated with sprinkler activation must also be considered

Questions?