The Mitigation of Hydrogen Explosions using Water Fog, Nitrogen Dilution and Chemical Additives

P. Battersby, P. Holborn, J. Ingram, A. Averill and P. Nolan
London South Bank University, UK
ICHS 2013 Brussels
Aim: Lower Explosion Overpressure

• Ignition of hydrogen in an enclosure
 – Explosion \Rightarrow Overpressure
 – Prevent loss of structural integrity
• Achieve inerting – prevent ignition (ideal case)
• OR reduce burning velocity of deflagration
 – Allow venting longer time to relieve pressure build up in compartment
 – Reduce the total volume of hydrogen that burns
• How?
 – Water Mist Fog
 – Nitrogen Dilution
 – Chemical Additives
LSBU Research Work

- Explore mitigation of hydrogen explosions
 - Water mist fog
 - Nitrogen dilution
 - Sodium hydroxide

- LSBU experiments
 - Burning velocity rig
 - Cylindrical explosion vessel tests
Burning Velocity Inhibition Experiments

- Characterise burning velocity for H_2-O_2-N_2 mixtures
 - Equivalence ratio
 - Fog density
 - Oxygen index ($\text{O}_2/\text{O}_2+\text{N}_2$)
 - Sodium hydroxide
Schlieren Images of the H_2–Air Flame

H$_2$ Flame

H$_2$ Flame with Water Fog
The Effect of Fog Density upon Burning Velocity versus Φ for H_2-O_2-N_2 Flames

H$_2$-Air flame ($\Omega = 21\%$)
Nitrogen diluted flame ($\Omega = 16\%$)
The Effect of NaOH Fog on the Burning Velocity of an H₂-Air Flame with Φ = 2

![Graph showing the effect of NaOH fog on the burning velocity of an H₂-Air flame with Φ = 2. The graph plots burning velocity (m/s) against mist concentration (mg/l). The data points indicate a decrease in burning velocity as the mist concentration increases. Two lines are plotted: one for water and one for 0.5M NaOH. The 0.5M NaOH line shows a steeper decrease in burning velocity compared to water.]
Overpressure Mitigation Experiments

• Determine rise in overpressure for H$_2$-O$_2$-N$_2$ mixtures in a cylindrical vessel
 - Equivalence ratio
 - Vent size
 - Fog density
 - Oxygen index
 - Sodium hydroxide
The LSBU Cylindrical Explosion Rig

- Pressure sensor
- Exploding wire igniter
- Hydrogen in
- Hydrogen/air vent
- Mixing fan
- Ultrasonic fogger unit
- Water
- 380 mm
- 270 mm
- 95 mm
- 60 mm
- 30 mm
- 450 mm
- 12.5 mm
- 800 mm
The Effect of Fog on the Explosion Overpressure for H₂-Air (Φ = 0.39) in the (nominally) Unvented Vessel
Effect of Fog Density on Explosion Overpressure-Time Histories

200 mm Diameter Vent

100 mm Diameter Vent
The Effect of Fog Density upon Flammability Limits determined for H_2-O_2-N_2 Mixtures

- Fog + Nitrogen dilution
- Fog + Nitrogen dilution + NaOH
Modelling Studies

- Simulate LSBU explosion tests
- Use empirical burning velocity data as input
- Explore mitigating effect of water fog & nitrogen dilution on overpressure
Modelling Studies

- Simulate LSBU explosion tests
- Use empirical burning velocity data as input
- Explore mitigating effect of water fog & nitrogen dilution on overpressure
Conclusions

• Characterised performance of water fog, nitrogen dilution and NaOH in mitigation of hydrogen deflagrations
• High density water fog (SMD 5 µm) can significantly reduce the burning velocity and rate of pressure rise
• Using NaOH additive with water fog
 – produces a sharp reduction in burning velocity above a critical fog density
 – Significantly narrows flammability limits
• Using Water Fog + N₂ + NaOH together provides optimal mitigation performance