Numerical simulations of spontaneous ignition of highpressure hydrogen based on detailed chemical kinetics

Hiroshi Terashima, Mitsuo Koshi, Chika Miwada, Toshio Mogi, Ritsu Dobashi (University of Tokyo)

Backgrounds

- Storage pressure of H₂ for the operation of fuel-cell vehicles: as high as 70 - 80 MPa
- Safety issues related to the spontaneous ignition of H₂ with air
- Need to establish reliable risk assessments and understand the mechanism of the spontaneous ignition

Hydrogen station in Japan (from Tokyo gas)

Schematic of spontaneous ignition

Purpose

Several experimental and numerical studies conducted

- Wen et al. (2008, 2009, 2012), Xu et al. (2009)
- Lee and Jeung (2009)
- Yamada et al. (2011)
- Bragin and Molkov (2012)

1.16	1.54	1.93	2.31	2.70	

from Lee and Jeung (2009)

Effects of initial diaphragm shape on spontaneous ignition

Governing equations

The compressible Navier-Stokes equations with a thermally perfect gas EoS

 $\begin{aligned} &\partial \rho / \partial t + \nabla \cdot (\rho \boldsymbol{u}) = 0, \\ &\partial (\rho \boldsymbol{u}) / \partial t + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u} + p \boldsymbol{\delta} - \boldsymbol{\tau}) = 0, \\ &\partial E / \partial t + \nabla \cdot ((E + p) \boldsymbol{u}) = \nabla \cdot (\boldsymbol{\tau} \cdot \boldsymbol{u} - \boldsymbol{q}), \\ &\partial (\rho Y_k) / \partial t + \nabla \cdot (\rho_k (\boldsymbol{u} + \boldsymbol{V}_k) Y_k) = \dot{\omega}_k \end{aligned}$

The operator-splitting form: Fluid and Chemical reaction solved separately

• Fluid: chemistry frozen $\dot{\omega}$

$$\dot{\omega}_k = 0$$

Chemical reaction: internal energy and volume constant and spatial gradient terms neglected

$$\mathrm{d}Y_k/\mathrm{d}t = \dot{\omega}_k/
ho$$

 $\mathrm{d}T/\mathrm{d}t = -\sum e_k \dot{\omega}_k/(
ho c_v)$

Numerical methods

Fluid

HLLC/HLL hybrid method (Kim et al. 2009) for numerical flux 3rd-order accuracy with MUSCL and Minmod limiter Central differencing for viscous, heat source, and diffusion terms 3rd-order TVD Runge-Kutta method for time integration

- CHEMKIN-II library used for thermodynamic and transport properties
- □ Chemical reaction

Dynamic multi-time scale (MTS, Gou et al. 2010) method for time integration H₂ mechanism: UT-JAXA (Shimizu et al. 2011), 9 species and 34 reactions

Problem description

□ 2-D rectangular duct of 10 cm × 0.5 cm

Preliminary 0-D and 1-D studies

□ 1-D shock tube problem

□ Ignition delay using a 0-D computation

Grid convergence study in 2-D

Wen 2008, 2012, Yamada 2009, Lee 2009 20-40 μm

□ 2000 K area rate defined a
$$\bar{A}_{2K}(t) = \frac{1}{A_h} \sum_{i=1}^{N} \sum_{k=1}^{N} A_{j,k}^{T \ge 2000}$$

Time histories of 2000 K area rate

Straight diaphragm shape

 $\delta = 0.0$

Ignition near the wall due to adiabatic condition

Temperature distributions at $t = 32.1 \ \mu s$

Schematic of the flow filed

Maximum temperature history

 Temperature near the wall (1500 K) > Temperature behind the shock (1300 K)

Time histories of 2000 K area rate

1 First ignition

Temperature distributions at $t = 1.7 \ \mu s$

Schematic of the flow filed

Second ignition in largely deformed diaphragm shape

Conclusions

- Spontaneous ignition of high-pressure hydrogen in a 2-D duct simulated using CFD with detailed chemical kinetics
 - O Effect of initial diaphragm shape on spontaneous ignition clarified
 - For the straight diaphragm, the ignition occurs near the wall
 - For the largely deformed diaphragm, three ignition events identified
 - 1. Ignition due to reflection of leading shock wave at the wall
 - 2. Hydrogen penetration into shock-heated air near the wall
 - 3. Deep penetration of hydrogen into shock-heated air

