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• Storage pressure of H2 for the operation of fuel-cell vehicles: as 
high as 70 - 80 MPa

• Safety issues related to the spontaneous ignition of H2 with air

• Need to establish reliable risk assessments and understand the 
mechanism of the spontaneous ignition

Hydrogen station in Japan (from Tokyo gas)
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� Several experimental and numerical studies conducted

� Effects of initial diaphragm shape on spontaneous ignition

• Wen et al. (2008, 2009, 2012), Xu et al. (2009)
• Lee and Jeung (2009)
• Yamada et al. (2011)
• Bragin and Molkov (2012)

from Lee and Jeung (2009)



The compressible Navier-Stokes equations with a thermally perfect gas EoS

� The operator-splitting form: Fluid and Chemical reaction solved 
separately

• Fluid: chemistry frozen

• Chemical reaction: internal energy and volume constant and 
spatial gradient terms neglected



� Fluid

HLLC/HLL hybrid method (Kim et al. 2009) for numerical flux
3rd-order accuracy with MUSCL and Minmod limiter
Central differencing for viscous, heat source, and diffusion terms
3rd-order TVD Runge-Kutta method for time integration

� Chemical reaction

Dynamic multi-time scale (MTS, Gou et al. 2010) method for time 
integration
H2 mechanism: UT-JAXA (Shimizu et al. 2011), 9 species and 34 reactions

• CHEMKIN-II library used for thermodynamic and transport 
properties



� 2-D rectangular duct of 10 cm × 0.5 cm

� Effects of initial diaphragm shape on spontaneous 
ignition

Schematic of computational domain

Deformations of initial diaphragm shape

High-pressure
H2

10 MPa, 300 K

Air 0.1 MPa, 300 K

δ = 0.0,0.05,0.1,−0.1



� 1-D shock tube problem
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� Ignition delay using a 0-D computation
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• H2/O2/N2=2/1/3.76

No ignition in 1-D



� Wen 2008, 2012, Yamada 2009, Lee 2009 → 20− 40 µm
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� 2000 K area rate defined as:
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δ = 0.0

� Temperature animation



� Ignition near the wall due to adiabatic 
condition

Temperature distributions at  t = 32.1 µs

Time / s
0 5 10 15 20 25 30 35

×10�6

T
e

m
pe

ra
tu

re
 K

1000

1500

2000

2500

3000

3500

NR, δ=0.0
δ=0.0

Shock wave

Hydrogen

Ignition near the wall

Shock-heated air

Contact surface

Schematic of the flow filed
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Maximum temperature history

• Temperature near the wall (1500 K) >
Temperature behind the shock (1300 K)



δ = 0.1

� Temperature animation



� Three ignition events identified

Temperature distributions at  t = 1.7 µs

Schematic of the flow filed

δ = 0.1
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Enlarged view of temperature
distributions at t = 10.8µs Schematic of the flow filed

δ = 0.1
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Enlarged view of temperature
distributions at t = 29.3µs Schematic of the flow filed

δ = 0.1
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δ = 0.1

� Temperature animation



� Spontaneous ignition of high-pressure hydrogen in a 2-D duct 
simulated using CFD with detailed chemical kinetics

� Effect of initial diaphragm shape on spontaneous ignition clarified

- For the straight diaphragm, the ignition occurs near the wall

- For the largely deformed diaphragm, three ignition events
identified
1. Ignition due to reflection of leading shock wave at the wall

2. Hydrogen penetration into shock-heated air near the wall

3. Deep penetration of hydrogen into shock-heated air



δ = −0.1

� Temperature animation



δ = 0.05

� Temperature animation


