CFD Based Simulation of Hydrogen Release through Elliptical Orifices

Nasim Shishehgaran and Marius Paraschivoiu

Concordia University

The 5th International Conference on Hydrogen Safety (ICHS)
Brussels, Belgium
September 9-11, 2013
Research Goal

- Numerically investigate the effect of orifice geometry on the behavior and development of hydrogen jet escaping from a high pressure reservoir.

Objectives

- Fixed elliptical and circular orifices with varying aspect ratios and sizes and under different storage pressures.
- Expanding circular holes with uniform radial growth rates effective before the release of hydrogen (t=0)
- Expanding circular holes with uniform radial growth rates effective after the release of hydrogen
- Deformation of circular holes to elliptic openings
Euler Equations:
\[\frac{\partial \vec{U}}{\partial t} + \vec{V} \cdot \vec{F}(U) = 0 \]

\[\vec{U} = \begin{bmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{bmatrix}, \quad \vec{F} = \begin{bmatrix} \rho(u - w_x) \\ \rho(u - w_x)u + P \\ \rho(u - w_x)v \\ \rho(u - w_x)w \\ \rho(u - w_x)E + uP \end{bmatrix}, \quad \begin{bmatrix} \rho(v - w_y) \\ \rho(v - w_y)u \\ \rho(v - w_y)v + P \\ \rho(v - w_y)w \\ \rho(v - w_y)E + vP \end{bmatrix}, \quad \begin{bmatrix} \rho(w - w_z) \\ \rho(w - w_z)u \\ \rho(w - w_z)v \\ \rho(w - w_z)w + P \\ \rho(w - w_z)E + wP \end{bmatrix} \]

Transport (Advection) Equation:
\[\frac{\partial c}{\partial t} + \frac{\partial (c(u - w_x))}{\partial x} + \frac{\partial (c(v - w_y))}{\partial y} + \frac{\partial (c(w - w_z))}{\partial z} = 0 \]

- \(c = 0 \) a cell full of hydrogen
- \(0 < c < 1 \) discontinuity (hydrogen-air interface)
- \(c = 1 \) a cell full of air

Abel Nobel Real Gas Law:
\[p = (1 - b \rho)^{-1} \rho R_{\text{mix}} T, \quad b = 0.00775 \ m^3/kg \]
Discretization

- The system of Euler Equations is discretized using an **implicit finite volume** discretization scheme.

\[
|V_i| \frac{U_i^{n+1} - U_i^n}{\Delta t} + \sum_{\partial V_i} \tilde{F}_{\partial V_i} \cdot \tilde{n}_{\partial V_i} \Delta S_{\partial V_i} = 0
\]

\[
\left(\frac{|V_i|}{\Delta t} \tilde{\Sigma} + \sum_{\partial V_i} \left(\frac{\partial \tilde{F}}{\partial \tilde{U}} \right) \cdot \tilde{n}_{\partial V_i} \Delta S_{\partial V_i} \right) \delta U_i^{n+1} = - \sum_{\partial V_i} \tilde{F}_{\partial V_i} \cdot \tilde{n}_{\partial V_i} \Delta S_{\partial V_i}
\]

- **Spatial Discretization (Convection Flux)**
 - 2nd order Roe-MUSCL scheme

- **Temporal Discretization**
 - 1st order Implicit Scheme

- **Linear Solver**
 - Iterative Method : GMRES

Moving Mesh \(\tilde{n}_{\partial V_i} \), \(\Delta S_{\partial V_i} \) and \(V_i \) are time-dependent.
Computational Domain

- **3D unstructured tetrahedral mesh**
- **METIS** software package is used to distribute the finite element/volume mesh to the processors and partition the domain for parallel computing.

<table>
<thead>
<tr>
<th>Grid Level</th>
<th>Number of Nodes</th>
<th>Number of Tetrahedrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine</td>
<td>$\approx 3 \times 10^6$</td>
<td>$\approx 17.5 \times 10^6$</td>
</tr>
<tr>
<td>Medium</td>
<td>$\approx 2 \times 10^6$</td>
<td>$\approx 12 \times 10^6$</td>
</tr>
<tr>
<td>Coarse</td>
<td>$\approx 1 \times 10^6$</td>
<td>$\approx 6 \times 10^6$</td>
</tr>
</tbody>
</table>

the discretized domain with decomposed zones using METIS (partially shown)

2D slice of the computational domain
Fixed (Circular & Elliptical) and Enlarging Orifices

- The parameter under consideration for comparable fixed circular and elliptical orifices is the same exit area.

- Expanding orifices with initial diameters of \(D_i = 1 \text{ mm} \) and \(D_i = 2 \text{ mm} \).

- The length of release tube is equal in all cases = 2mm.

<table>
<thead>
<tr>
<th>Orifice Type</th>
<th>Major Axis, (a) (mm)</th>
<th>Minor Axis, (b) (mm)</th>
<th>Aspect Ratio, (a/b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Elliptical 1</td>
<td>2</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Elliptical 2</td>
<td>2.45</td>
<td>0.41</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orifice Type</th>
<th>Major Axis, (a) (mm)</th>
<th>Minor Axis, (b) (mm)</th>
<th>Aspect Ratio, (a/b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Elliptical 1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Elliptical 2</td>
<td>5</td>
<td>0.82</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Orifice Type</th>
<th>Major Axis, (a) (mm)</th>
<th>Minor Axis, (b) (mm)</th>
<th>Aspect Ratio, (a/b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Elliptical 1</td>
<td>10</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>Elliptical 2</td>
<td>12.25</td>
<td>2.04</td>
<td>6</td>
</tr>
</tbody>
</table>

The cross sectional surfaces of the varying ARs of the orifices with the equal exit area (\(A = 19.63 \text{ mm}^2 \))
Initial and Boundary Conditions

<table>
<thead>
<tr>
<th>Initial Reservoir Pressure</th>
<th>70MPa & 10MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Temperature</td>
<td>300 K</td>
</tr>
<tr>
<td>Air mixture fraction</td>
<td>1</td>
</tr>
<tr>
<td>Hydrogen mixture fraction</td>
<td>0</td>
</tr>
<tr>
<td>Hydrogen & air isentropic exponent (γ)</td>
<td>1.4</td>
</tr>
<tr>
<td>Molecular mass of hydrogen (MH₂)</td>
<td>2.016 g/mol</td>
</tr>
<tr>
<td>Molecular mass of air (Mair)</td>
<td>28.96 g/mol</td>
</tr>
<tr>
<td>Initial time step</td>
<td>10⁻¹⁰</td>
</tr>
<tr>
<td>Initial CFL Number (Fixed cases)</td>
<td>0.15</td>
</tr>
<tr>
<td>Max CFL Number (Fixed cases)</td>
<td>0.8</td>
</tr>
<tr>
<td>Initial CFL Number (Moving cases)</td>
<td>0.3</td>
</tr>
<tr>
<td>Max CFL Number (Moving cases)</td>
<td>5.0</td>
</tr>
</tbody>
</table>

- The viscosity effect and the heat transfer are neglected.
- The effect of the gravity on the fluid is neglected.
- Free-slip and adiabatic solid walls
- Non-reflecting farfield
Grid Sensitivity study

Contact Surface Pressure
- 1 Million Nodes
- 2 Million Nodes
- 3 Million Nodes

Centerline Mach Number
- 1 Million Nodes
- 2 Million Nodes
- 3 Million Nodes

Centerline Concentration
- 1 Million Nodes
- 2 Million Nodes
- 3 Million Nodes

Centerline Temperature
- 1 Million Nodes
- 2 Million Nodes
- 3 Million Nodes

Centerline Density
- 1 Million Nodes
- 2 Million Nodes
- 3 Million Nodes

Centerline Pressure
- 1 Million Nodes
- 2 Million Nodes
- 3 Million Nodes
Evaluation of the contact surface location and the release time
(Fixed Circular & Elliptical Orifices)

Release time = 0.6 µs
Release time = 1 µs

Storage Pressure = 70 MPa
Storage Pressure = 10 MPa

D = 1mm
D = 2mm
D = 5mm
Contact Surface Pressure (Fixed Orifices), P=70 MPa

The same cross sectional area

Higher Aspect Ratio → More pronounced expansion

The same aspect ratio

Smaller release hole → More pronounced expansion → Rapid depressurization

a) Area= 0.8 mm²

b) Area= 3.14 mm²

c) Area= 19.63 mm²
Contact Surface Pressure (Fixed Orifices), $P=10$ MPa

- a) Area = 0.8 mm2
- b) Area = 3.14 mm2
- c) Area = 19.63 mm2

The same cross sectional area \Rightarrow Lower the storage pressure \Rightarrow Less pronounced expansion
Centerline Temperature (Fixed Orifices, P=70 MPa)

a) Circular Orifice, AR=1

Area = 0.8 mm2

b) Elliptical Orifice, AR=4

Area = 3.14 mm2

c) Elliptical Orifice, AR=6

Area = 19.63 mm2
Centerline Temperature (Fixed Orifices, P=10 MPa)

a) Circular Orifice, AR=1

- Area = 0.8 mm2

b) Elliptical Orifice, AR=4

- Area = 3.14 mm2

c) Elliptical Orifice, AR=6

- Area = 19.63 mm2
Centerline Temperature (Fixed Orifices, $P=10$ MPa)

a) Centerline Mach Number

b) Centerline Density

c) Centerline Pressure

Area = 0.8 mm2

Area = 3.14 mm2

Area = 19.63 mm2
After 10 µs of hydrogen release into air from the circular and elliptical orifices (Area=3.14 mm²)
Circular Expanding Orifices effective at $t=0$

- $P=70$ MPa
 - Growth Rate $V=0.2$ mm/µs
 - Release time $= 0.6$ µs

- $P=10$ MPa
 - Release time $= 1$ µs

Two dimensional views of the expanding release hole ($D_i=2$mm)
Contact Surface Pressure and Centerline Temperature (Expanding Exit)

(Fixed Circular Vs. Expanding Orifices)
D_i=1 mm and D_f=2 mm

Expanding Exit Hole
(P=70 MPa), D_f=2 mm

Fixed Circular Orifice
(P=70 MPa), D_f=2 mm

Identical Initial Diameter \[\Rightarrow \]
Expanding Release Hole \[\Rightarrow \] More Pronounced Expansion

➢ During the expansion, the hydrogen jet issuing from the Expanding release hole has lower temperature peaks compared to the jet from the fixed circular orifice.
Circular expanding orifices effective after the release

Expanding orifices (started at $t=0.6\ \mu s$ & $t=0$) and fixed orifice, ($D_1=1\ mm$ & $D_2=2\ mm$, $P=70\ MPa$)

Expanding orifices (started at $t=0.6\ \mu s$ & $t=0$) and fixed orifice, ($D_1=1\ mm$ & $D_2=2\ mm$, $P=10\ MPa$)

Expanding Exit Hole ($t=0.6$) ($P=70\ MPa$), $D_i=2\ mm$

Expanding Exit Hole ($t=0$) ($P=70\ MPa$), $D_i=2\ mm$

Fixed Circular Orifice ($P=70\ MPa$), $D_i=2\ mm$
Deformation of a small circular hole to an elliptical opening

Release time = 0.6 µs

Release time = 1 µs

P=70 MPa

P=10 MPa

Cross sectional areas, \(D_i = 2 \) mm, \(v = 0.2 \) mm/µs

Side views, \(D_i = 2 \) mm, \(v = 0.2 \) mm/µs

Stretching rate = 0.2 mm/µs
Contact Surface Pressure and Centerline Temperature

Stretching, Expanding (started at the release time) and Fixed holes,
(D₁=1 mm & Dᵢ=2 mm), P=70 MPa

Stretched Exit Hole
(P=70 MPa)

Fixed Circular Orifice
(P=70 MPa)

Expanding Exit Hole
(P=70 MPa)
Contributions

- The effects of different geometries and configurations of the exit hole including fixed elliptical, fixed circular and expanding orifices on the dispersion of hydrogen were studied using a 3D parallel in-house code.

- The effects of the storage pressure and the size of the orifice on the dispersion and development of the hydrogen jet are dominant than the effect of the orifice shape.

- The possibility of auto-ignition may be affected by applying expanding orifices.
Thank You