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ABSTRACT

In this study, the spread of cryogenic liquid due to a limited period of release is investigated for the
first time. This physical phenomenon is governed by three parameters: the evaporation rate per unit
area, release time, and spill quantity. However, it is found that two dimensionless parameters, the
dimensionless evaporation rate and the dimensionless spill rate, are determined by non-
dimensionalizing the governing equation of this phenomenon. Third-order perturbation solutions are
obtained and compared with a numerical solution to verify the perturbation solution. For the same spill
quantity, continuous and subsequent instantaneous models are necessary for small release times,
whereas continuous models are only required for large release times. Additionally, two consecutive
spread models are necessary for a small spill quantity at a fixed release time. These two spread
regimes are clearly distinguished using the perturbation solution.

1.0 INTRODUCTION

Because the release of flammable materials in a petro-chemical plant likely leads to a fire or an
explosion, a study of the release and spread of such materials is essential for the quantitative risk
assessment and risk-based inspection of these plants. The release of materials can be classified into
vapor phase or liquid phase according to the phase of the material, and the spread of a released liquid
is more complicated than that of released gas because evaporation occurs during the spread of a liquid.
The present work focuses on the release and spread of a cryogenic liquid, such as LH,, which is
continued work from the previous results[1-2] of authors.

Release can be defined as a loss of containment[3] within components or equipment of several plants;
therefore, release means that some materials contained in the equipment escape and spread into
atmosphere. Spurted liquids can spread via vaporization from the ground or water, and various models
have been developed to treat the spread. There are three-dimensional models using the full Navier-
Stokes equation[4], a shallow-layer model[5-9], and a simple physical model[1,2,10]. The shallow-
layer model consists of partial differential equations to solve the velocity and pool height with respect
to the radius and time under the assumption of axisymmetry. The simplest mathematical model, which
can be called a simple physical model, describes pool spread in terms of how the pool radius and
height evolve in time. The corresponding equations consist of two ordinary differential equations with
respect to time and one algebraic equation. VVaporization can be modeled based on thermal energy
conservation or heat conduction from the surface on which the liquid expands and by neglecting heat
radiation; however, the concept of constant evaporation rate per unit area has been used to simplify the
evaporation process in most cases.

The aforementioned differential equations used in the spread model require initial conditions that
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depend on the type of release. Release is generally categorized into instantaneous and continuous
release. According to API RP 581[3], instantaneous release occurs so rapidly that the fluid disperses as
a single cloud or pool, whereas continuous release occurs over a longer period of time. Therefore, it
can be said that instantaneous release occurs due to an abrupt destruction of vessels or a similar
situation. The case where fluid flows continuously from a small hole in damaged equipment can be
modeled as continuous release. Mathematically, in the spread model of instantaneous release,
parameters regarding the initial shape of the released liquid are given when time is zero; however, all
the parameters are zero at that time in the case of continuous release.

The spread model of continuously- released- fluid can require a period of release time that is not
necessary in the spread model of an instantaneously- released- fluid. If the release time is less than the
entire time domain, the instantaneous release model should be added to the continuous model from the
end of the release time. This combined release that consists of the initial continuous model and
subsequent instantaneous model is more realistic. In the present work third-order perturbation
solutions are obtained for the first time with the spread of the combined release, and the solutions are
compared with numerical solutions that are believed to be exact solutions. Parameters that distinguish
continuous release and combined release are discovered and formulated using analytical features of
the perturbation solutions.

2.0 GOVERNING EQUATIONS

There are several forces during the spread of liquid. Gravity is only important for the spread of
cryogenic liquid because cryogenic liquid vaporizes extremely quickly. If the shape of the spreading
liquid is assumed to be a circular cylinder, the governing equations can be obtained with a slight
modification of the previous work[2] of the authors.

g—$=\/a_H, (1)

where R - pool radius, m; T — time, s; « - 2gA, m/s%; g - gravity, m/s%; A - 1 for spills on the ground or
1-pl p,, for spills on water; p - density of liquid, kg/m®; p, - density of water, kg/m*; H — pool height,
m.

3_\T/:—EﬁRz+ﬂ; ﬂZTg for 0<T<Ty, =0 for T>T,, @
d

where V - pool volume, m®; E - evaporation rate per unit area, m/s; A - spill source rate, m*s; Q — spill
volume, m® T4 —period of release time, s. To complete the model, the following algebraic equation is
required:

\Y,
"R ©

If the liquid is continuously released from storage, the following initial conditions can be used:
V(©0)=0, R()=0, H(0)=0 (4)

From Equations (1) through (4), it is understood that the evaporation rate per unit area, E, the spill
volume, Q, and the period of release time, Ty, govern the model equations for spread on the ground.
For simplicity, spread on the ground is considered in the present study. To make the governing
equations dimensionless, the following variables are introduced:



V=——r, r=—, h=—, t=—, ()
T

where v - dimensionless volume; r - dimensionless radius; h - dimensionless height; t - dimensionless
time; = and L are the characteristic time and length scale defined as

r=T,, L=aT? ©)

Using the dimensionless variables in Equation (5), the following non-dimensional governing equations
are derived:

L. —er?: ﬂ*—L for 0<t<1l, p.=0 for t>1, (7

7roc3Td6

dv_
dt

where ¢ - dimensionless evaporation rate, E/aTy.

dr
he €)

r2

The initial conditions become
v(0)=0, r(0)=0, h(0)=0 (20)

From Equations (7) through (10), it can be seen that the dimensionless number, &, corresponding to the
dimensionless evaporation rate and the dimensionless spill source rate, 3 are the parameters that can
control the non-dimensional governing equations.

3. PERTURBATION SOLUTIONS
The evaporation rate per unit area of LH, on a paraffin wax ground! varies from approximately
4.23x10™ m/s to approximately 12.7x10™ m/s. Therefore, the dimensionless evaporation rate, &, can be

naturally chosen as the perturbation parameter. The perturbation solutions can then be expressed in the
following forms:

V=V, +&v, +&2V, +&%vy, (1)
where v, - zeroth order term, v, — 1st order term, v, — 2nd order term, vs — 3rd order term.

F=ry+er +&°r, +£°1,, (12)
where r, - zeroth order term, r, — 1st order term, r, — 2nd order term, r; — 3rd order term.

h=h, +&h, +&%h, +&°h,, (13)
where hg - zeroth order term, h; — 1st order term, h, — 2nd order term, h; — 3rd order term.

Terms higher than O(&%) are omitted. In this study, a third-order expansion is used, and terms up to

O(&%) are retained. Substituting Equations (11) through (13) into Equations (7) through (9) and
equating the coefficients of &, & & and & on both sides, we obtain
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Compared with the corresponding equations in the authors’ previous work[2], it is noteworthy that
Equations (16), (17), (23), (24), and (25) are improved in the present work.

3.1 Continuous Regime (0<t <1)

Twelve new equations (Equations (14) through (25)) have been obtained; therefore, the number of
initial conditions must increase to twelve. Applying the conditions in Equation (10) to Equations (11)
through (13) and equating the coefficients of &°, &, etc., on both sides, we get

Vv,(0)=0, r,(0)=0, hy(0)=0 (26)



v,(0)=0, r(0)=0, h(0)=0 (27)
v,(0)=0, r,(0)=0, h,(0)=0 (28)
v;(0)=0, r;(0)=0, hy,(0)=0 (29)
Solving Equations (14) through (25) with the initial conditions in Equations (26) through (29) yields

1/4,3/4

o= \/—ﬂ t (30)
rl=_¥ *—1/4,[9/4 (31)
2\/§ —3/4,15/4
r, =—— D. t 32
) 675/3 (32)
2\/_ —5/4 21/4
- 33
E 4455ﬁ (33)
and
V, = fit (34)
V. _—Eﬂllzth (35)
ST 1
2 4
2= 75 (36)
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4
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T (39)
1 —1/245/2
. 40
2 =300 (40)
hy =———B.'t* 41
3 2475ﬂ (41)

3.2 Instantaneous Regime (t>1)

The solutions in this regime can be obtained using v(1), r(1), and h(1) as initial conditions because the
release ends at t=1. From the solutions, we can obtain



8 1/2 8 —1/2 3
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A new time coordinate is introduced for convenience as follows:
t'=t-1 (45)

For the initial conditions for the continuous regime, the following initial conditions in view of the new
time are obtained:

V(t'=0)=V,, rt'=0)=r, hyt'=0)=h, (46)
V(t' =0)=0, r(t'=0)=0, h(t'=0)=0 (47)
V,('=0)=0, r,(t'=0)=0, h,(t'=0)=0 (48)
V('=0)=0, r,(t'=0)=0, hy(t'=0)=0 (49)

Solving Equations (14) through (25) with the initial conditions in Equation (46) through (49) yields

o, =r2 + v’ (50)

VO :Vr (51)
v
hy =5 52
A N (52)
1/2413 2412

. 1 (v, te rit J (53)
2 v (r2+ 207y 3 2

Vl_ V1/2t72 Ztl (54)
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h = : 1/2t i - 12 (VT : * - J (55)
r + 2V (rT + 2\/1 t')z 2
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v, = LRV v A (57)
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h, = —%(l vt° + lvi’zrft'S L ritt + 1vrl’zrfit’sj (58)
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4. RESULTS AND DISCUSSION

To evaluate the perturbation solutions, numerical solutions based on the Runge-Kutta method are
accurately obtained after several trials. Under the assumption that the numerical solutions have
adequate accuracy, these solutions are used to verify the perturbation solutions. For the purpose of
numerical evaluation, a spreading of LH, on the ground with E =4.2x10™* m/s was considered.

The third-order perturbation solutions and the numerical solutions are calculated for release times of
0.1s, 1s,and 30 s with a fixed spill volume of 1 me to explore the effect of the release time on the
solutions. In the case of the pool volume, two types of solutions for small times of release (T4=0.1, 1 5)
are indistinguishable over the entire period of time, as seen in Figs. 1-2; however, there is a small
difference between the two solutions in the late stage of spread, shown in Fig. 3. These characteristics
of the perturbation solutions are well known, even in the previous work[2]. A similar tendency can be
seen for the pool radius in Figs. 4-6, except for the small difference between two solutions over the
late stage of spread despite the small time of release.

The third-order perturbation solutions are illustrated with a fixed spill volume of 1 m® in Fig. 7 to
understand the effect of the release time on the spread pattern in detail. Discontinuous points are found
in the curves of the pool volume with time when the release time is less than or equal to 20 s. These
points are boundaries between the initial continuous releases and the following instantaneous releases.
In other words, the points represent the end of the continuous releases and simultaneously, the
beginning of the instantaneous releases. As the release time increases to 30 s, the discontinuous point
disappears because only the continuous mode exists in the spread. It is notable that the pool volume
becomes zero before the release is stopped in this case because if the spill source rate, the ratio of the
spill volume to the release time, is small, the evaporation from the pool is larger than the supply to the
pool, as described by Equation (2). Therefore, logically, the transition to the opposite direction will
lead to the pure instantaneous mode. When the release time is infinitesimally small, the pure
instantaneous mode will be obtained.

To see the other tendency, the effect of the spill volume on the spread pattern with fixed a released
time of 30 s was studied. A similar spread pattern can be seen in Fig. 8, where there are also
discontinuous points in the combined released mode with Q=10 and 100 m®, and the pure continuous
mode in the case of a small released volume with Q=0.1 m? is shown in Fig. 7. Therefore, the pure
continuous mode can be defined as the spread in which evaporation is completed within the release
time. The boundary between the continuous mode and the combined mode is determined by following
condition:



v(it=1)=0 (62)

Applying the above equation to the solution of the continuous mode, Equations (34) through (37), we
obtain

B —1—85 ﬁ&’zﬁigz 2 B =0 (63)

45 7425
Solving Equation (63) gives
£=2370/8. (64)

In the case of second-order solutions, the coefficient in Equation (64) changes to 2.326. Substituting
the corresponding dimensional quantities into Equation (64), we finally obtain

T = 23701 ,/3 (65)
E\ 7o

Fig. 9 shows a diagram that can show two regimes regarding the release mode.
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5. CONCLUSIONS

When cryogenic liquids, such as LH, or LNG, leak from plant equipment, the concepts of continuous
and instantaneous release are used. For the consequence analysis in API RBI assessment[3], two types
of release are also defined. The release models decide part of the governing equations and an initial
condition. Liquids leak continuously until the released liquids vaporize completely in the continuous
release model, whereas the instantaneous model handles only instantaneously- released- liquid.
Therefore, the release and the spread are simultaneously maintained until complete vaporization in
continuous mode is achieved; however, in instantaneous mode, the spread is only considered because
the release occurs instantaneously.

For the present work, the spread due to the continuous release with a limited release time is treated.
The spread due to this type of release becomes the combined release that consists of the initial
continuous mode and the following instantaneous mode. The subsequent instantaneous mode begins
from the time when the leak stops. It is discovered that the model equations for the spread on the
ground is governed by three parameters: the evaporation rate per unit area, the spill volume, and the
release time. To obtain more general solutions, non-dimensional governing equations are deduced
based on characteristic scales. It is revealed that the dimensionless evaporation rate and the
dimensionless spill source rate are the parameters that can control the non-dimensional governing
equations. It is noteworthy that the governing parameters diminish from three to two through the non-
dimensionalization of the governing equations.

The third-order perturbation solutions are obtained and agree well with the numerical solutions for the
dimensionless governing equations. It is discovered that both the combined release mode and the pure
continuous mode can exist via the relationship of the evaporation rate per unit area, the release time,
and the spill volume. Under the assumption of constant evaporation rate per unit area, the realm of the
two release modes is distinguished in the coordinate system of the release time and the spill volume
using the analytical feature of the perturbation solution. It should be noted that the concept of the three
modes of release are established more scientifically, which is different from the conventional concept,
such as API RBI 581[3].
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